∫0∞(1x2)dx\int_0^{\infty}\left(\frac{1}{x^2}\right)dx∫0∞(x21)dx
∫01(3x5)dx\int_0^1\left(\frac{3}{x^5}\right)dx∫01(x53)dx
∫1∞(1x2)dx\int_1^{\infty}\left(\frac{1}{x^2}\right)dx∫1∞(x21)dx
∫1∞(ln(x)x)dx\int_1^{\infty}\left(\frac{ln\left(x\right)}{x}\right)dx∫1∞(xln(x))dx
∫1∞(lnxx)dx\int_1^{\infty}\left(\frac{lnx}{x}\right)dx∫1∞(xlnx)dx
∫1∞(1x3)dx\int_1^{\infty}\left(\frac{1}{x^3}\right)dx∫1∞(x31)dx
∫−∞0(13−x)dx\int_{-\infty}^0\left(\frac{1}{\sqrt{3-x}}\right)dx∫−∞0(3−x1)dx
Given a function f(x) and the interval [a,b], the definite integral is equal to the area that is bounded by the graph of f(x), the x-axis and the vertical lines x=a and x=b
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!