$xdy+y^2dx=0$
$m^2-14m^2-m^2-115m^2$
$\int_1^{10}\left(4x+2\right)\sqrt{2x^2+2x}dx$
$\lim_{x\to\infty}\left(\frac{\left(\frac{hw}{x}\right)^2exp\left(\frac{hw}{x}\right)}{\left(exp\left(\frac{hw}{x}\right)-1\right)^2}\right)$
$\frac{d^2}{dx^2}\left(x^5-2x^4+2x^2-7\right)$
$\sqrt[5]{x^4.x^2}.\sqrt[10]{x^6}.\:y^8$
$t^2-\:-10t-25$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!