limx→∞(6x2e5x)\lim_{x\to\infty}\left(\frac{6x^2}{e^{5x}}\right)x→∞lim(e5x6x2)
∫x(x2−7)2dx\int\frac{x}{\left(x^2-7\right)^2}dx∫(x2−7)2xdx
x2+2x−8x2−3x−4x2−4x+1x2−6+8\frac{\frac{x^2+2x-8}{x^2-3x-4}}{\frac{x^2-4x+1}{x^2-6+8}}x2−6+8x2−4x+1x2−3x−4x2+2x−8
∫(2−x)⋅cos(px)dx\int\left(2-x\right)\cdot\cos\left(px\right)dx∫(2−x)⋅cos(px)dx
(z2+9)(z−3)(z+3)+81\left(z^2+9\right)\left(z-3\right)\left(z+3\right)+81(z2+9)(z−3)(z+3)+81
limx→∞(ln(7x+2)ln(3x+7))\lim_{x\to\infty}\left(\frac{ln\left(7x+2\right)}{ln\left(3x+7\right)}\right)x→∞lim(ln(3x+7)ln(7x+2))
x2−4x−21=0x^2-4x-21=0x2−4x−21=0
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!