$\left(1-\sin\right)\left(\sec x+\tan\right)=\frac{1-\sin^2x}{\cos x}$
$\int\frac{x^2+x+7}{\left(x+2\right)\left(x^2+9\right)}dx$
$\left(27xy^2+64y\right)\left(27x^2y+64x\right)$
$x^2+y^2+3z^2=8$
$\frac{1-\sin x}{1+\sin x}$
$\int\:\left(cos^2x\right)\left(senx\right)\frac{1}{4}\left(4+cos^3x\right)dx$
$\left(2m+5\right)\left(4m^2-10m+25\right)$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!