$\frac{1}{\left(x^2+x\right)}dx=\frac{1}{\left(y-1\right)}dy$
$\left(\frac{sin^2\left(x\right)}{1+cos\left(x\right)}\right)=1-cos\left(x\right)$
$\frac{10q^5w^7}{2w^3}\cdot\frac{4\left(q^6\right)^2}{w^{-5}}$
$\left(x-3\right)\left(5-x\right)$
$4x\:+\:8y\:=\:2\left(2x\:+\:4y\right)$
$\int\left(18x^2\ln\left(x+1\right)\right)dx$
$\frac{\left(x+2\right)^2}{2x-1}$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!