−15−34-15-34−15−34
(1+cos2w)(1−cos2w)\left(1+cos^2w\right)\left(1-cos^2w\right)(1+cos2w)(1−cos2w)
15⋅215\cdot215⋅2
limx→0(cos2(5x)−secxx)\lim_{x\to0}\left(\frac{\cos^2\left(5x\right)-\sec x}{x}\right)x→0lim(xcos2(5x)−secx)
limx→∞((x2+2x)2x+2)\lim_{x\to\infty}\left(\frac{\left(x^2+2x\right)}{2x+2}\right)x→∞lim(2x+2(x2+2x))
1cscθ +1−1cscθ −1=−2tan2θ \frac{1}{csc\theta\:+1}-\frac{1}{csc\theta\:-1}=-2tan^2\theta\:cscθ+11−cscθ−11=−2tan2θ
log(x)4=3\log\left(x\right)^4=3log(x)4=3
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!