Evaluate the limit limx→π2(sec(x)−tan(x))\lim_{x\to{\frac{\pi }{2}}}\left(\sec\left(x\right)-\tan\left(x\right)\right)limx→2π(sec(x)−tan(x)) by replacing all occurrences of xxx by π2\frac{\pi }{2}2π
Try other ways to solve this exercise
(−4)(−12)(−5)\left(-4\right)\left(-12\right)\left(-5\right)(−4)(−12)(−5)
93⋅949^3\cdot9^493⋅94
6−4⋅646^{-4}\cdot6^46−4⋅64
limx→0(1+5x)7x\lim_{x\to0}\left(1+\frac{5}{x}\right)^{7x}x→0lim(1+x5)7x
x2−5x+64=0x^2-5x+64=0x2−5x+64=0
t2+6t+8t+2\frac{t^{2}+6t+8}{t+2}t+2t2+6t+8
limx→0(1+sin(x)5x)\lim_{x\to0}\left(1+\sin\left(x\right)^{\frac{5}{x}}\right)x→0lim(1+sin(x)x5)
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!