Evaluate the limit limx→π2(1+sec(x)tan(x))\lim_{x\to{\frac{\pi }{2}}}\left(\frac{1+\sec\left(x\right)}{\tan\left(x\right)}\right)limx→2π(tan(x)1+sec(x)) by replacing all occurrences of xxx by π2\frac{\pi }{2}2π
Try other ways to solve this exercise
362−24+1636^2-24+16362−24+16
−(−8)+(−4)−(−2)-\left(-8\right)+\left(-4\right)-\left(-2\right)−(−8)+(−4)−(−2)
log(x−5)=log(x−5)\sqrt{\log\left(x-5\right)}=\log\left(x-5\right)log(x−5)=log(x−5)
x4−30x2+225x^4-30x^2+225x4−30x2+225
−3 + k = −13-3\:+\:k\:=\:-13−3+k=−13
dydx(−4x2y2−4y3=2x3+5x2y)\frac{dy}{dx}\left(-4x^2y^2-4y^3=2x^3+5x^2y\right)dxdy(−4x2y2−4y3=2x3+5x2y)
x3+2x2+4x+5x2+4\frac{x^3+2x^2+4x+5}{x^2+4}x2+4x3+2x2+4x+5
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!