$\lim_{x\to-\infty}\left(\frac{x+1}{x^2+3}\right)$
$\left(5x^2+12y^4\right)^2$
$\sqrt{20u^6y^5}\sqrt{5u^4}y^3$
$\int\frac{1}{1+\sqrt[3]{y}}dx$
$\lim_{x\to\infty}\left(-4x\right)$
$\frac{\sin\left(-x\right)}{\tan\left(-x\right)}$
$13p^2-14p+8p^2$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!