$x-3x>4+x$
$\lim_{x\to0}\left(\frac{\tan\left(x\right)}{1+\cos\left(x\right)}\right)$
$\int_0^4\left(\pi x^2\right)dx$
$\frac{\left(3x^2+5\right)}{\left(\left(x-1\right)\left(x+1\right)^2\right)}$
$1-\cos^2y\cdot\cot\left(y\right)$
$\frac{3+x}{12}<-1$
$\left(6x^2+y^3+1\right)^2$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!