$\lim_{x\to-\infty}\left(2x+3+\sqrt{4x^2+7}\right)$
$36x^4-12x^2y^2+y^4$
$\int\frac{5x^4}{5+x^5}dx$
$\left(2x^2-5x+1\right)^2$
$9a^2-12a^2b+4a^29^2$
$-\:\left(-\:2+\:10\:-\:3\right)$
$\frac{\sqrt{x}-6\left(\sqrt{x}+6\right)}{x-6\left(\sqrt{x}+6\right)}$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!