$\lim_{x\to\infty}\left(\frac{ln\left(2x+5\right)}{ln\left(6x+7\right)+10}\right)$
$\cot^2\left(x\right)-2\cot\left(x\right)-3=0$
$\frac{x^4}{4x^3}$
$y^2-5y+6$
$\left(\frac{1}{8}x^3y-\frac{2}{5}y\right)^2$
$\sin\left(a\right)\cdot\sec\left(c\right)+\sin\left(c\right)\cdot\sec\left(a\right)$
$\left(x^6+8\right)\left(x^6+5\right)$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!