$tanx+cotx=secx\cdot cscx\cdot cos^2x$
$\int\frac{\csc^2\left(2x\right)}{4-\cot\left(2x\right)}dx$
$\lim_{x\to\infty}\left(\frac{ln\left(x-4\right)}{x-3}\right)$
$\frac{1}{2}\log\:_a\left(4\right)+\log\:_a\left(15\right)-\log\:_a\left(10\right)=\log\:_a\left(x\right)$
$xy'+4y=8x^4$
$\frac{5}{6}\cdot\left(1-x\right)>\frac{1}{3}\cdot\left(x-1\right)-x$
$-13m-5n-8p-7p-8m+3n$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!