$\lim_{x\to0}\left(\frac{sin\left(\frac{1-cos\left(\pi x\right)}{x}\right)}{x}\right)$
$\sin\left(2x\right).\cos\left(x\right)-\sin\left(x\right).\cos\left(2x\right)=\sin\left(x\right)$
$\left(b^5+9\right)\left(b^5-2\right)$
$\lim_{x\to0}\left(\frac{tan3x-3x}{sin^3x}\right)$
$2x+1\cdot x-1$
$\lim_{x\to1}\left(\frac{x^4-1}{x^6-1}\right)$
$\lim_{x\to-3}\left(\frac{x^{2}-9}{-6x+18}\right)$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!