$\frac{\left(x+1\right)\left(x-3\right)}{2}+\ln\left(1+x\right)+\frac{1}{y}$
$\frac{dy}{dx}=\left(x-1\right).\left(y+2\right)$
$\left(\:\frac{4}{3}0.5\:\right)^3$
$\left(3a-4b^3\right)\left(3a+4b^3\right)$
$\int_1^{\infty}\left(\frac{lnx}{\sqrt[2]{x}}\right)dx$
$-8n\left(n+7\right)-3n\left(4n+3\right)$
$\frac{dy}{dx}=2\sqrt{1-y}\cos\left(x\right)$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!