$\frac{1+\cos x-\cos^2x}{\sin x}=\sin x+\cot x$
$\int_0^{\frac{3\pi}{2}}\left(\sin\left(\frac{2}{3}\right)x\right)dx$
$9\int\left(\cos^2\left(x\right)\right)dx$
$25x^2+14x+4=0$
$-9-5+12-8+2$
$4\:\cdot\left[\left(+5\right)\:+\:\left(-7\right)\right]\:-\:\left(-3\right)\cdot\:\left[7\:-\:\left(+3\right)\right]$
$\left(4c+6\right)\left(4c-2\right)$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!