$\frac{dx}{dy}=\frac{x^3+x}{\left(y^3+2y^2+y\right)\left(x-1\right)}$
$cx^5+bx^4+ax^3$
$\left(3a-2\right)\left(a+1\right)$
$\lim_{x\to-\infty}\left(\frac{\sqrt{4x^2+1}}{1-x}\right)$
$\left(13a^2b^4-10ab^2-1\right)\left(13a^2b^4-10ab^2+1\right)$
$\frac{d}{dx}\left(2xy^3-x^2y=y^2-3x-\arctan\left(\sin\left(2xy\right)\right)\right)$
$m-1\cdot m-2$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!