$\frac{dy}{d\theta\:}-3=\sin\left(3\theta\:\right);y\left(0\right)=\pi$
$\left(\:3x^{-2}\:+\:y^4\:\right)^2$
$\lim\:_{x\to\:\infty\:}\left(\frac{x^3+6x^2+1}{x^3+7x^2+x}\right)$
$\frac{3x+1}{4}-\frac{1}{3}\le\frac{2}{15}\left(3x+2\right)+\frac{4\left(1-x\right)}{3}$
$\frac{-3x+1}{x}=-x$
$2x^2+2x+x^2+2$
$3.26+5.22+42.1$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!