$\lim_{x\to-3}\left(\frac{x^2-9}{2x^2-6x}\right)$
$y'=\frac{xy^2}{\sqrt{5+x^2}}$
$\int_0^1\left(cos\left(4\pi x\right)\right)dx$
$3\sqrt{x}+\frac{3}{x^2}-4\sqrt[3]{x^2}+\frac{x^3}{8}+24$
$\sqrt{x+7}+x=5$
$0.7\left(2.3\:+\:4.4r\right)$
$\left(\left(1\cdot\left(-4\right)\cdot1\right)+\left(\left(4\right)\cdot5\cdot1\right)+0\right)-\left(0+\left(\left(4\right)\cdot\left(6\right)\cdot1\right)+\left(1\cdot5\cdot\left(-1\right)\right)\right)$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!