Multiply the single term sin(2x)\sin\left(2x\right)sin(2x) by each term of the polynomial (tan(x)+cot(x))\left(\tan\left(x\right)+\cot\left(x\right)\right)(tan(x)+cot(x))
Try other ways to solve this exercise
−6x2+x−93x2−5x+4\frac{-6x^2+x-9}{3x^2-5x+4}3x2−5x+4−6x2+x−9
7x+y+9=2xy−17x+y+9=2xy-17x+y+9=2xy−1
ddxy2=x2xy−4\frac{d}{dx}y^2=\frac{x^2}{xy-4}dxdy2=xy−4x2
∫2x+3(x+2)(x−1)dx\int\frac{2x+3}{\left(x+2\right)\left(x-1\right)}dx∫(x+2)(x−1)2x+3dx
83+49+4583+49+4583+49+45
1−sin2(a)⋅1+tan2(a)=11-\sin^2\left(a\right)\cdot1+\tan^2\left(a\right)=11−sin2(a)⋅1+tan2(a)=1
∫(ln(7x))2dx\int\left(ln\left(7x\right)\right)^2dx∫(ln(7x))2dx
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!