∫y1−y4dy\int\frac{y}{1-y^4}dy∫1−y4ydy
limx→0(x2+x+1ex)\lim_{x\to0}\left(\frac{x^2+x+1}{e^x}\right)x→0lim(exx2+x+1)
(4z2c6)3\left(\frac{4z^2}{c^6}\right)^3(c64z2)3
+4−7+4−5+7−2+4−5+5+4-7+4-5+7-2+4-5+5+4−7+4−5+7−2+4−5+5
dydx=y+1x+x⋅y\frac{dy}{dx}=\frac{y+1}{\sqrt{x}+\sqrt{x}\cdot\sqrt{y}}dxdy=x+x⋅yy+1
((a2)2)2\left(\left(a^2\right)^2\right)^2((a2)2)2
−1<2xx+1-1<\frac{2x}{x+1}−1<x+12x
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!