$\int\left(x^5ln\left(1+x\right)\right)dx$
$x^2+x-6>0$
$\lim\:_{x\to\:\infty\:}\left(-ln\left(x-1\right)\right)$
$2\left(\frac{4}{5.4}+\frac{4}{4}\right)$
$\int x^3\sqrt{8+x^4}dx$
$\lim_{x\to\infty}\sqrt[2]{3x^2+5x-9}-\sqrt{3x^2-x+1}$
$\int\frac{4x+1}{x^2-5x+6}dx$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!