∫14xdx\int\frac{1}{4}xdx∫41xdx
limx→∞(x4−2x2+xx8+8)\lim_{x\to\infty}\left(\frac{x^4-2x^2+x}{\sqrt{x^8+8}}\right)x→∞lim(x8+8x4−2x2+x)
4x2+4x+y2=04x^2+4x+y^2=04x2+4x+y2=0
36z4−36zy+9y236z^4-36zy+9y^236z4−36zy+9y2
(5x2+1)2 − (5x2−1)2\left(5x^2+1\right)^2\:-\:\left(5x^2-1\right)^2(5x2+1)2−(5x2−1)2
ddx12x\frac{d}{dx}\frac{1}{2}xdxd21x
ddx cos3bx\frac{d}{dx}\:cos^3bxdxdcos3bx
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!