dydx=1+y21+y2⋅xy\frac{dy}{dx}=\frac{1+y^2}{1+y^2}\cdot xydxdy=1+y21+y2⋅xy
∫( (2x+3)(x2 +3x)6)dx\int\left(\:\left(2x+3\right)\left(x^2\:+3x\right)^6\right)dx∫((2x+3)(x2+3x)6)dx
ln(a)=ln(b)+xy\ln\left(a\right)=\ln\left(b\right)+xyln(a)=ln(b)+xy
1u−5+1=13u−1\frac{1}{u-5}+1=\frac{1}{3u-1}u−51+1=3u−11
6x11−10x−246x^{11}-10x-246x11−10x−24
51−(−19)51-\left(-19\right)51−(−19)
dfdx=−9x−8x−2x52\frac{df}{dx}=-9\sqrt{x}-\frac{8}{\sqrt{x}}-\frac{2}{x^{\frac{5}{2}}}dxdf=−9x−x8−x252
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!