$\lim_{x\to\infty}\left(\frac{2x^6}{3x^4+x^2-x-1}\right)$
$\left(\:x^2\:+\:3\:\right)\:^2$
$\frac{1}{2}x-1<\frac{3x-4}{2}+3$
$\:\left(x\:+\:2\right)\left(x\:+\:3\right)\:=\:\left(x\:+\:2\right)\left(x\:-\:3\right)$
$\lim_{x\to3}\left(\frac{5x^2+15x}{x+3}\right)$
$\frac{x^2-x-2}{x-1}$
$x+15\le21$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!