$\int\frac{8x-3}{x\left(x^2+4\right)^2}dx$
$\lim_{x\to\infty}\left(x\cos\left(\frac{x\pi}{2\left(x+1\right)}\right)\right)$
$\left(-3.23\right)-0.14$
$12y^2+4y^2+15y^3+33y^3+12$
$-5\left(1-2x\right)=-5-6x$
$\frac{dy}{dx}=e^{-y}\:arc\:\tan\left(x\right)$
$3\csc^2\left(x\right)+16\csc\left(x\right)+5$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!