dydx=2y+3x2+3x\frac{dy}{dx}=\frac{2y+3}{x^2+3x}dxdy=x2+3x2y+3
(x2−y2)(x2+xy+y2)(x2−xy+y2)\left(x^2-y^2\right)\left(x^2+xy+y^2\right)\left(x^2-xy+y^2\right)(x2−y2)(x2+xy+y2)(x2−xy+y2)
6xe2x+1ex6xe^{2x}+1e^x6xe2x+1ex
y(x)−x=y′(x)⋅(y′(x)+x)y\left(x\right)-x=y'\left(x\right)\cdot\left(y'\left(x\right)+x\right)y(x)−x=y′(x)⋅(y′(x)+x)
a+b+b−aa+b+b-aa+b+b−a
f(x)=x61+x4f\left(x\right)=\frac{x^6}{1+x^4}f(x)=1+x4x6
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!