$\int\left(\frac{\cos\left(6x\right)}{4+\sin\left(6x\right)}\right)dx$
$\lim_{x\to0}\left(\frac{x}{-1+e^x}\right)$
$2\left(a\:-\:5\right)\:=\:24$
$\frac{dy}{dx}=\frac{y^2}{xy^2+xy}$
$\sqrt[2]{2^3}\cdot x^5$
$\frac{dy}{dx}=4y-2x+\sin\left(2x+4y\right)-c$
$\frac{-16^2}{n}$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!