$\lim_{x\to0}\left(\frac{\left(\ln\left(1+\sin\left(x\right)\right)-x\right)}{\cos\left(x\right)-1}\right)$
$-4\cdot25$
$\frac{dy}{dx}=5x^2y^2$
$\int\frac{2x^4+3x^3-20x-28}{2x^3-x^2-8x+4}dx$
$y=\frac{x^3}{21}+\frac{7}{4x},x=1,x=2$
$sea\:f\left(x\right)=x^{\frac{3}{2}}$
$\int_0^{\frac{\pi}{3}}\left(\frac{1}{\cos\left(x\right)^2}\right)dx$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!