1.x2−6x+161.x^2-6x+161.x2−6x+16
∫1e(ln(9x))dx\int_1^e\left(\ln\left(9x\right)\right)dx∫1e(ln(9x))dx
−x4(−6x+9−6x2−11x)-x^4\left(-6x+9-6x^2-11x\right)−x4(−6x+9−6x2−11x)
9+−2+−5+−3+19+-2+-5+-3+19+−2+−5+−3+1
∫((tan4(x))(sec3(x))(tan(x))sec(x))dx\int\left(\left(tan^4\left(x\right)\right)\left(sec^3\left(x\right)\right)\left(tan\left(x\right)\right)\sec\left(x\right)\right)dx∫((tan4(x))(sec3(x))(tan(x))sec(x))dx
cos30=tan30⋅sec30\cos30=\tan30\cdot\sec30cos30=tan30⋅sec30
ex⋅ee^x\cdot eex⋅e
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!