$\lim_{x\to\infty}\left(\frac{\ln\left(x^4+1\right)}{x}\right)$
$\frac{2}{5}x^6-\frac{2}{5}x^6$
$\left(\:-4p\:+\:8b\:-\:23\:f+\:45p^3\:-\:12\:b^8\right)\:\left(\:-\:15p^6b^6f^2\:\right)$
$\int_1^{\infty}\left(sin\left(\pi x\right)\right)dx$
$\frac{\left(-16v^6x^7+8vx\right)}{\left(4v^3x^4\right)}$
$6\cdot6^{5}$
$3sin^2x-5sinx+2=0$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!