$12x^2-11x+2$
$\frac{d}{dx}e^{-x^2}+3$
$\lim_{x\to\infty}\:\frac{\left(6x+1\right)}{\sqrt{4x^2-2x+1}}$
$f\left(\frac{1}{2}\right)=\frac{1}{2}+\left(\frac{1}{2}\right)+\frac{\frac{1}{2}^3}{3}$
$\int4\:\left(2x+1\right)^6dx$
$-4x\cdot\left(x-4\right)+\frac{1}{4}x^2\cdot\left(x-\frac{1}{2}\right)-\frac{1}{2}x^3$
$y=\frac{\left(x^2-8\right)^{\frac{1}{3}}\sqrt{x^3+1}}{x^6-7x+5}$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!