$\frac{d}{dx}3x^{4x}$
$\lim_{x\to\infty}\left(\frac{4x^3+2x^2}{x^3+x}\right)$
$\lim_{x\to1}\left(\frac{1-x+\ln\:\left(x\right)}{1-\cos\:\:\left(\pi\:x\right)}\right)$
$\int5\sqrt{x^2+4\:}dx$
$\left(-5\right)^6\cdot\left(-5\right)^5$
$4\cos^2\left(x\right)-\sin^2\left(x\right)=5\cos^2\left(x\right)-1$
$\lim_{x\to\infty}\left(\frac{3x}{3x+1}\right)$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!