Exercise
$\left(4a^3-5b^2\right)^4$
Step-by-step Solution
Intermediate steps
1
Expand the binomial $\left(4a^3-5b^2\right)^4$
$\left(4a^3\right)^4-20\left(4a^3\right)^3b^2+6\left(4a^3\right)^2\left(-5b^2\right)^2+16a^3\left(-5b^2\right)^3+\left(-5b^2\right)^4$
Intermediate steps
2
The power of a product is equal to the product of it's factors raised to the same power
$256a^{12}-20\cdot 64a^{9}b^2+6\cdot 16a^{6}\left(-5b^2\right)^2+16a^3\left(-5b^2\right)^3+\left(-5b^2\right)^4$
3
Multiply $-20$ times $64$
$256a^{12}-1280a^{9}b^2+6\cdot 16a^{6}\left(-5b^2\right)^2+16a^3\left(-5b^2\right)^3+\left(-5b^2\right)^4$
4
Multiply $6$ times $16$
$256a^{12}-1280a^{9}b^2+96a^{6}\left(-5b^2\right)^2+16a^3\left(-5b^2\right)^3+\left(-5b^2\right)^4$
Final answer to the exercise
$256a^{12}-1280a^{9}b^2+96a^{6}\left(-5b^2\right)^2+16a^3\left(-5b^2\right)^3+\left(-5b^2\right)^4$