$\lim_{x\to\frac{\pi}{2}}\left(\frac{cos\left(x\right)}{x-\frac{\pi}{2}}\right)$
$\frac{\cos^2\left(x\right)+1}{sin^2\left(x\right)}-19$
$\lim_{x\to\infty}\frac{2x+1}{4x^2+x}$
$3+2+7+5+8+10+11+4+3$
$\left(1-\frac{3}{\:y}+x\right)dy+\left(y-\frac{3}{x}+1\right)dx=0$
$\left(\frac{1}{2}y\right)^2$
$\ln\left(x+3\right)=2$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!