$9x^2+9y^2+12x+36y-104=0$
$\lim_{x\to\infty}\left(\frac{\tan\left(\frac{1}{x}\right)^2}{\ln\left(1+\frac{4}{x}\right)^2}\right)$
$9\cdot32$
$3x\left(2x-1\right)^2-2\left(x-3\right)\left(x+3\right)$
$\left(-x^4+3x^3+7x^2+16x-5\right):\left(x-5\right)$
$\int\frac{3.1\sin\left(10x\right)}{5+\cos\left(10x\right)}dx$
$+\frac{3}{4}xy^2+\frac{1}{8}xy^2$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!