limx→1(3x2−4x+1)\lim_{x\to1}\left(3x^2-4x+1\right)x→1lim(3x2−4x+1)
244\sqrt{244}244
4x2−5x−2=04x^{2}-5x-2=04x2−5x−2=0
limn→∞ 8n2n+1\lim_{n\to\infty}\:\frac{8^n}{2^n+1}n→∞lim2n+18n
x2−5x+12=0x^2-5x+12=0x2−5x+12=0
sin2x−cos2x=1−2sin2xsin^2x-cos^2x=1-2sin^2xsin2x−cos2x=1−2sin2x
limx→∞ 3x(x)3 + 2\lim_{x\to\infty}\:\frac{3x}{\sqrt{\left(x\right)^3\:+\:2}}x→∞lim(x)3+23x
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!