$\left(\frac{x^2-4}{x+16}\right);x=5$
$\int\left(\frac{1}{t^2\sqrt{25+t^2}}\right)dt$
$\frac{2}{1+cosx}-tan^2\left(\frac{x}{2}\right)=1$
$\frac{\left(x^3+7\right)dy}{y^2+1}=x^2dx$
$-5x+1\ge16$
$\arctan\left(\sec\:\left(\pi\right)\:\right)$
$\frac{1}{2}x+\left(-70\right)-2\frac{1}{4}x-9-\left(-2\right)$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!