$\int\frac{y}{\sqrt{7-y}}dy$
$\frac{dy}{dx}\:=\:y^2=\ln\left(\ln\left(x\right)^4\right)$
$x^{16}+16x^4$
$\lim_{x\to\infty}\left(1+\frac{12}{x}\right)^{\frac{x}{2}}$
$\lim_{x\to2}\left(3x^2-6\right)$
$20+\:20\:+\:11+\:64\:+\:64\:+64+\:64$
$\int_e^{\infty}\left(\frac{4}{\left(xln\left(x\right)\right)}\right)dx$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!