∫0∞ x21+x3 dx\int_0^{\infty\:}\:\frac{x^2}{\sqrt{1+x^3}}\:dx∫0∞1+x3x2dx
x2+2x+3x ^ { 2 } + 2 x + 3x2+2x+3
∫4(16+x2).x2dx\int\frac{4}{\left(\sqrt{16+x^2}\right).x^2}dx∫(16+x2).x24dx
−3g<12-3g<12−3g<12
dydx=ex+y, y(0)=0\frac{dy}{dx}=e^{x+y},\:y\left(0\right)=0dxdy=ex+y,y(0)=0
(−112)\left(-11^2\right)(−112)
limx→07x−7x2−1\lim_{x\to0}\frac{7^x-7}{x^2-1}x→0limx2−17x−7
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!