∫x(x+2)(x+1)(x+2)dx\int\frac{x\left(x+2\right)}{\left(x+1\right)\left(x+2\right)}dx∫(x+1)(x+2)x(x+2)dx
(2x−3y)(3x2)\left(2x-3y\right)\left(3x^2\right)(2x−3y)(3x2)
145+a2−23a+a−24145+a^2-23a+a-24145+a2−23a+a−24
3xy2−2xy+y, x=1, y=−13xy^2-2xy+y,\:x=1,\:y=-13xy2−2xy+y,x=1,y=−1
limx→∞ (−3x2−8x−9)\lim_{x\to\infty}\:\left(-3x^2-8x-9\right)x→∞lim(−3x2−8x−9)
limx→0(x−tan(x)x3)\lim_{x\to0}\left(\frac{x-\tan\left(x\right)}{x^3}\right)x→0lim(x3x−tan(x))
3x−14≤7x−23x-14\le7x-23x−14≤7x−2
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!