$2\tan\left(x\right)-\frac{3}{\tan\left(x\right)}-1=0$
$\int_0^{\infty}\left(\frac{1}{9+4x+x^2}\right)dx$
$\frac{d}{dx}\frac{2x^2}{3x^2+4}$
$\int20t^4e^{-t^5}dt$
$\left(7x+\frac{1}{\sqrt{3}}\right)^2$
$\binom{\:n}{k}\cdot\:\binom{\:k}{r}$
$-24+11\left(-8\right)$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!