Exercise
$\left(2^{x+1}-2^{1-x}\right)^2$
Derivative of this function
$\frac{d}{dx}\left(\left(2^{\left(x+1\right)}- 2^{\left(1-x\right)}\right)^2\right)=2\left(2^{\left(x+1\right)}- 2^{\left(1-x\right)}\right)\left(\ln\left(2\right)2^{\left(x+1\right)}+\ln\left(2\right)2^{\left(1-x\right)}\right)$
See step-by-step solution
Integral of this function
$\int\left(2^{\left(x+1\right)}- 2^{\left(1-x\right)}\right)^2dx=\frac{2^{\left(2x+2\right)}}{2\ln\left(2\right)}-8x+\frac{2^{\left(2-2x\right)}}{-2\ln\left(2\right)}+C_0$
See step-by-step solution