$\lim_{x\to2}\frac{x^2-x-12}{\left(x^2-4x\right)\sin\left(x+3\right)}$
$\frac{dy}{dx}\left(x^2y^2=x^2y+3xy^2\right)$
$\sin^{-1}\left(\sin\frac{9\pi}{8}\right)$
$\int\frac{e^{x+2}}{e^{x+3}+5}dx$
$\left(\frac{x^2}{3}\right)^3\:$
$2\cos\left(2\right)x-\sin\left(2\right)x+2\cos\left(x\right)=0$
$a+\frac{1}{b}=1$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!