Applying the trigonometric identity: 1+tan(θ)2=sec(θ)21+\tan\left(\theta \right)^2 = \sec\left(\theta \right)^21+tan(θ)2=sec(θ)2
Try other ways to solve this exercise
(2a+b2)3\left(2a+b^2\right)^3(2a+b2)3
cosec2x= cos2x(cot x +tan x)2cosec^2x=\:cos^2x\left(cot\:x\:+tan\:x\right)^2cosec2x=cos2x(cotx+tanx)2
(5x12)2( 5 x ^ { \frac { 1 } { 2 } } ) ^ { 2 }(5x21)2
∫x−1(x+4)(x−3)dx\int\frac{x-1}{\left(x+4\right)\left(x-3\right)}dx∫(x+4)(x−3)x−1dx
2x2−16x+52x^2-16x+52x2−16x+5
3n2n2+63n2n2\frac{3n}{\frac{2n^2+6}{\frac{3n}{2n^2}}}2n23n2n2+63n
−4cosx + 3 = 3-4cosx\:+\:3\:=\:3−4cosx+3=3
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!