x4+5x2+9x^4+5x^2+9x4+5x2+9
dydx(y+1)2x=yln(x)\frac{dy}{dx}\frac{\left(y+1\right)^2}{x}=y\ln\left(x\right)dxdyx(y+1)2=yln(x)
5⋅(y+2)25\cdot\left(y+2\right)^25⋅(y+2)2
3x2+12x−3=03x^2+12x-3=03x2+12x−3=0
m4−22m2+40m^4-22m^2+40m4−22m2+40
dydx+5yx−2=6sin(x)(x−2)5\frac{dy}{dx}+\frac{5y}{x-2}=\frac{6\sin\left(x\right)}{\left(x-2\right)^5}dxdy+x−25y=(x−2)56sin(x)
limx→π2(3cos2(x)2−2sin(x))\lim_{x\to\frac{\pi}{2}}\left(\frac{3\cos^2\left(x\right)}{2-2\sin\left(x\right)}\right)x→2πlim(2−2sin(x)3cos2(x))
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!