∫(1+tanx)3sec2xdx\int\left(1+tanx\right)^3sec^2xdx∫(1+tanx)3sec2xdx
∫ 1(1+121x2)32dx\:\int\:\frac{1}{\left(1+121x^2\right)^{\frac{3}{2}}}dx∫(1+121x2)231dx
tan(1)sec(1)=sin(1)\frac{\tan\left(1\right)}{\sec\left(1\right)}=\sin\left(1\right)sec(1)tan(1)=sin(1)
(x+03)2\left(x+03\right)^2(x+03)2
sec2x=3tanx−1\sec^2x=3\tan x-1sec2x=3tanx−1
−7x−2−9y+10x-7x-2-9y+10x−7x−2−9y+10x
u+v=−13u+v=-13u+v=−13
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!