∫1x(x+1)(x−4)dx\int\frac{1}{x\left(x+1\right)\left(x-4\right)}dx∫x(x+1)(x−4)1dx
−36(−8(−5+3)+12(−2+2⋅4))+3⋅(−8)+3⋅(−12+5⋅2)-\frac{36}{\left(-\frac{8}{\left(-5+3\right)+\frac{12}{\left(-2+2\cdot4\right)}}\right)+3\cdot\left(-8\right)+3\cdot\left(-12+5\cdot2\right)}−(−(−5+3)+(−2+2⋅4)128)+3⋅(−8)+3⋅(−12+5⋅2)36
dydt=23\frac{dy}{dt}=23dtdy=23
dtdx(x=r(wt−sin(wt)))\frac{dt}{dx}\left(x=r\left(wt-\sin\left(wt\right)\right)\right)dxdt(x=r(wt−sin(wt)))
36t2−24t+436t^2-24t+436t2−24t+4
∫acos(x−b)dx\int a\cos\left(x-b\right)dx∫acos(x−b)dx
∫(3x+5x2+3x−18)dx\int\left(\frac{3x+5}{x^2+3x-18}\right)dx∫(x2+3x−183x+5)dx
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!