$\lim_{x\to1}\left(\frac{x+1}{\sqrt{x}-1}\right)$
$\sec^2x-3=\tan^2x-2$
$\lim_{x\to\infty}\left(\frac{e^x}{x^2+2x+3}\right)$
$\int\left(8sin\left(x\right)\cdot\left(11-cos\left(x\right)\right)^3\right)dx$
$\left(x-1\right)\left(x^2+3x-4\right)$
$\left(1+4x\right)^{\frac{1}{2}}\left(1-x\right)^{-\frac{1}{2}}$
$\left(+1\right)-\left(-2\right)-\left(+8\right)-\left(-5\right)$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!