$\lim_{x\to\infty}\left(\frac{\ln\left(x\right)}{\sqrt{x}}-\frac{1}{x}\right)$
$\int_0^{\frac{3}{2}}\left(\frac{1}{2-3x}\right)dx$
$\frac{x^2+x+1}{x-\pi}$
$\frac{1}{2}\int\left(\frac{x^2}{\sqrt{x+9}}\right)dx$
$1-\sin\left(a\right)\cos\left(a\right)\tan\left(a\right)=\cos^2\left(a\right)$
$-\left(-\left(8-6\right)-\left(-\left(7-11\right)\right)\right)$
$\frac{cos\left(y\right)}{sin\left(y\right)-1}+\frac{cos\left(y\right)}{sin\left(y\right)+1}=-2tan\left(y\right)$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!